

The 8th 'Utrecht Sessions' on Congenital Heart Disease – "Hypoplastic Left Heart Syndrome: from fetus to stage I" February 2 - 4, 2023

# Anticoagulation after stage 1

Heleen van Ommen, MD, PhD Dept. Pediatric Hematology & Oncology Erasmus MC Sophia Children's Hospital Rotterdam, Netherlands

c.vanommen@erasmusmc.nl

# Disclosures

| Research Support/P.I.     | Daiichi Sankyo, Octapharma, Bayer BV           |  |  |
|---------------------------|------------------------------------------------|--|--|
| Employee                  | No relevant conflicts of interest to declare   |  |  |
| Consultant                | Boehringer-Ingelheim, Astra Zeneca, Bayer BV   |  |  |
| Major Stockholder         | No relevant conflicts of interest to declare   |  |  |
| Speakers Bureau           | No relevant conflicts of interest to declare   |  |  |
| Honoraria                 | No relevant conflicts of interest to declare   |  |  |
| Scientific Advisory Board | Boehringer Ingelheim, Daiichi Sankyo, Bayer BV |  |  |

# Thrombosis: important complication in CHD

CHAT (Children's Hospital-Acquired Thrombosis) registry in US:

| TABLE 1.         Final Children's Hospital-Acquired Thrombosis ICU Risk Assessment Model         Complete Case       Imputed |                  |         |                  |         |  |  |
|------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------------------|---------|--|--|
|                                                                                                                              | $(N = 395)^{a}$  |         | $(N = 735)^{a}$  |         |  |  |
| Variable                                                                                                                     | OR (95% CI)      | p       | OR (95% CI)      | p       |  |  |
| Braden Q score ≤2 within 24 hr of ICU admission<br>(reference = slight/no limitations)                                       | 3.40 (1.92–6.04) | < 0.001 | 3.65 (2.14–6.24) | < 0.001 |  |  |
| Length of stay prior to ICU admission $\geq$ 3 d                                                                             | Not Applicable   |         | 2.48 (1.10-5.62) | 0.03    |  |  |
| Central venous catheter placed 30 d prior to or on ICU admission                                                             | 4.54 (2.45–9.17) | < 0.001 | 4.37 (2.69–7.07) | < 0.001 |  |  |
| Past medical history of congenital heart disease                                                                             | 2.95 (1.47–5.92) | 0.002   | 2.87 (1.74–4.73) | < 0.001 |  |  |
| Past history of autoimmune/inflammatory disorder<br>or infection during admission                                            | 2.48 (1.24–4.94) | 0.01    | 2.06 (1.23–3.44) | 0.01    |  |  |

Yellenge:

Why are children with congenital heart disease at risk for thrombosis?

### Virchow's Trias

#### **Endothelial dysfunction**

Central venous catheters Surgical anastomoses Artificial materials Post bypass inflammation

#### Hypercoagulability

THROMBOSIS

Cardiopulmonary bypass Infections Artificial materials Polycythemia/cyanosis Congenital thrombophilia

#### **Altered bloodflow**

Ventricular dysfunction Valve dysfunction Shunt obstruction Atrial dilatation Arrhythmias Limited inflow/outflow Central venous catheter

# Thrombosis: especially children < one month

#### PHIS database 2004-2012: 91,909 cardiac surgery patients

|                                                     | All CHD patients who had<br>cardiac surgery | CHD patients who developed thrombosi<br>after cardiac surgery |
|-----------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|
| Missing                                             | 28,418 (.)                                  | 813 (.)                                                       |
| ASD/VSD Repair (RACHS-2)                            | 37,178 (58.6)                               | 408 (22.1)                                                    |
| Fontan Procedure (RACHS-3)                          | 2234 (3.5)                                  | 49 (2.7)                                                      |
| ГAPVR Repair (RACHS-4)                              | 1455 (2.3)                                  | 52 (2.8)                                                      |
| Fetralogy of Fallot Repair (RACHS-3)                | 3944 (6.2)                                  | 63 (3.4)                                                      |
| Transposition of Great Arteries Repair<br>(RACHS-4) | 494 (0.8)                                   | 9 (0.5)                                                       |
| Fruncus Arteriosus Repair (RACHS-4)                 | 499 (0.8)                                   | 45 (2.4)                                                      |
| Septostomy Procedure (RACHS-4)                      | 5699 (9)                                    | 481 (26.1)                                                    |
| Systemic to Pulmonary Shunt Placement               | 4759 (7.5)                                  | 631 (34.3)                                                    |

### Thrombosis is related with increased mortality



# Thrombosis after stage 1 Norwood

Literature: incidence varies 0-40%

Risk factors: young age lower weight high Hb



Yellenge

Which antithrombotic regimen does your center use after Norwood procedure?

- 1. None
- 2. Only heparin
- 3. Only aspirin
- 4. Heparin, followed by aspirin
- 5. Other



### Postoperative anticoagulation

Literature review:

- No heparin
- Heparin dosis 10-28 U/kg/hr

Al Jubair et al. 1998; retrospective study326 mBTT shuntTherapeutic UFH until 48 hr postop.:1.2% (2/173)No heparin:2 % (3/153)No bleeding complications reported



#### AHA 2013 stage 1 with modified BTT shunt:

Consider low dose heparin postoperatively

Consider therapeutic dose heparin in children with higher thrombotic risk: infection, stented shunts

# Longterm anticoagulation

Literature review:

• Low dose aspirin 2-5 mg/kg/day

Li et al, 2007: Multicenter prospective cohort study; 1004 patients/ aspirin in 806 aortopulmonary shunts n=954, Sano shunts n=50 Total shunt thrombosis incidence= 12%

Aspirin: reduced risk of thrombosis (HR 0.13; 95% CI 0.03-0.59) and dead Bleeding complications not reported

Boucher et al. Frontiers in Surg 2022; Agargwal et al. Clin Appl Throm Haemost 2017; Li et al Circulation 2007

### Addition of clopidogrel had no effect systemic to pulmonary shunts





Composite outcome: death, transplantation, shunt thrombosis

Wessel et al. NEJM 2017

### Enoxaparin therapeutic dose

Cross-sectional study 2003-2008 145 patients after stage 1

Enoxaparin n=95 Enoxaparin/ASA n=3 ASA n=3 Vs No anticoagulation n=44



### Despite antithrombotic measures, thrombosis still occur

Data from

Pediatric Heart Network Single Ventricle Reconstruction

Trial



**Figure 1.** Cumulative incidence function (CIF) for thromboembolic events during stage I Norwood hospitalization.

# Direct oral anticoagulants (DOACs)



#### **Advantages:**

Oral administration Less monitoring Independent of antithrombin No dietary interaction Less interaction other drugs

# DOAC trials in pediatric cardiac disease

| Study                 | Drug        | Patients                                                                                              | Number                                                | Bleeding (major)               | Thrombotic events             |
|-----------------------|-------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------|-------------------------------|
| Universe<br>trial     | Rivaroxaban | Fontan children                                                                                       | Riva n=76<br>Asp n=34<br>12 mo                        | n=1 (2%)<br>n=0 (0%)           | n=2 (3%)<br>n=3 (9%)          |
| Saxophone<br>trial    | Apixaban    | Single ventricle CHD<br>all stages<br>Kawasaki/aneurysms<br>Dil. cardiomyopathy<br>Pulm. hypertension | Apixaban n=126<br>SOC n=62<br>(VKA/LMWH)<br>12 mo     | 1.8/100 p yrs<br>6.8/100 p yrs | n=0 (0%)<br>n=0 (0%)          |
| Ennoble-<br>ATE trial | Edoxaban    | Fontan<br>Kawasaki<br>Heart failure<br>Other                                                          | Edoxaban n=109<br>SOC n=58<br>(VKA/LMWH)<br>3 mo/9 mo | n=0 (0%)/n=2 (1%)<br>n=0       | n=0 (0%)/n=3 (2%)<br>n=1 (2%) |

McCrindle et al. J Am Heart Assoc 2021; Payne et al Am Heart J 2020; Portman et al. J Am Coll Cardiol 2022

### Potential new drugs: inhibitors of contact pathway



#### Table 1 Properties of classes of FXI inhibitors currently in development

|                                         | ASOs                 | Monoclonal<br>antibodies | Small molecules             | Natural<br>inhibitors | Aptamers                    |
|-----------------------------------------|----------------------|--------------------------|-----------------------------|-----------------------|-----------------------------|
| Mechanism                               | Block biosynthesis   | Bind target protein      | Bind target protein         | Bind target protein   | Bind target protein         |
| Administration route                    | SC                   | IV or SC                 | IV or oral                  | IV                    | IV or SC                    |
| Administration frequency                | Weekly to<br>monthly | Monthly                  | Daily                       | Daily                 | Daily                       |
| Onset of action                         | Slow (weeks)         | Rapid (hours to days)    | Rapid (minutes to<br>hours) | Rapid (minutes)       | Rapid (minutes to<br>hours) |
| Offset of action                        | Slow (weeks)         | Slow (weeks)             | Rapid (minutes to hours)    | Rapid (hours)         | Rapid (minutes to<br>hours) |
| Renal excretion                         | No                   | No                       | Yes                         | Uncertain             | No                          |
| CYP metabolism                          | No                   | No                       | Yes                         | No                    | No                          |
| Potential for drug–drug<br>interactions | No                   | No                       | Yes                         | Unknown               | No                          |

ASO, antisense oligonucleotide; IV, intravenous; SC, subcutaneous; CYP, cytochrome P450.

### Both venous and arterial indications FXI inhibitors



De Caterina et al. Eur Heart J 2023



- Increased thrombotic risk after stage I palliation
- Lack of RCTs on antithrombotic management
- Current management strategies vary
- Still substantial residual risk of thrombosis
- Role for new anticoagulants?

